Объем кэша l2 2 мб. Новый подход к кэшированию процессора. Что такое кэш, зачем он нужен и как работает

При выполнении различных задач в процессор вашего компьютера поступают необходимые блоки информации из оперативной памяти. Обработав их ЦП записывает полученные результаты вычислений в память и получает на обработку последующие блоки данных. Так продолжается до тех пор, пока поставленная задача не будет выполнена.

Вышеупомянутые процессы производятся на очень большой скорости. Однако скорость даже самой быстрой оперативной памяти значительно меньше скорости любого слабого процессора. Каждое действие, будь то запись на неё информации или считывание с неё занимают много времени. Скорость работы оперативной памяти в десятки раз ниже скорости процессора.

Не смотря на такую разницу в скорости обработки информации, процессор ПК не простаивает без дела и не ожидает, когда ОЗУ выдаст и примет данные. Процессор всегда работает и всё благодаря присутствию в нем кэш памяти.

Кэш — особый вид оперативной памяти. Процессор использует память кэша для хранения тех копий информации из основной оперативной памяти компьютера, вероятность обращения к которым в ближайшее время очень велика.

По сути кэш-память выполняет роль быстродействующего буфера памяти хранящего информацию, которая может потребоваться процессору. Таким образом процессор получает необходимые данные в десятки раз быстрее, чем при считывании их из оперативной памяти.

Основным отличием кэш памяти от обычного буфера являются встроенные логические функции. В буфере хранятся случайные данные, которые как правило обрабатываются по схеме » получен первым, выдан первым» либо » получен первым, выдан последним». В кэш памяти содержатся данные, вероятность обращения к которым в ближайшее время очень велика. Поэтому благодаря «умному кэшу» процессор может работать с полной скоростью и не ожидать данные, извлекаемые из более медленной оперативной памяти.

Основные типы и уровни кэш-памяти L1 L2 L3

Кэш память выполнена в виде микросхем статической оперативной памяти (SRAM), которые устанавливаются на системной плате либо встроены в процессор. В сравнении с другими видами памяти, статическая память способна работать на очень больших скоростях.

Скорость кэша зависит от объема конкретной микросхемы, Чем больше объем микросхемы, тем труднее добиться высокой скорости для её работы. Учитывая данную особенность, при изготовлении кэш память процессора выполняют в виде нескольких небольших блоков, именуемых уровнями. Самой распространенной на сегодняшний день считается трехуровневая система кеша L1,L2, L3:

Кэш память первого уровня L1 — самая маленькая по объему (всего несколько десятков килобайт), но самая быстрая по скорости и наиболее важная. Она содержит данные наиболее часто используемые процессором и работает без задержек. Обычно количество микросхем памяти уровня L1 равно количеству ядер процессора, при этом каждое ядро получает доступ только к своей микросхеме L1.

Кэш память уровня L2 по скорости уступает памяти L1, но выигрывает в объеме, который измеряется уже в нескольких сотнях килобайт. Она предназначена для временного хранения важной информации, вероятность обращения к которой ниже, чем у информации хранящейся в кэше L1.

Третий уровень кэш памяти L3 — имеет самый большой объем из трех уровней (может достигать десятков мегабайт), но и обладает самой медленной скоростью, которая всё же значительно выше скорости оперативной памяти. Кэш память L3 служит общей для всех ядер процессора. Уровень памяти L3 предназначен для временного хранения тех важных данных, вероятность обращения к которым чуть ниже, чем у информации которая хранится в первых двух уровнях L1, L2. Она также обеспечивает взаимодействие ядер процессора между собой.

Некоторые модели процессоров выполнены с двумя уровнями кэш памяти, в которых L2 совмещает все функции L2 и L3.

Когда полезен большой объем кэша.

Значительный эффект от большого объема кэша вы ощутите при использовании программ архиваторов, в 3D играх, во время обработки и кодирования видео. В относительно «легких» программах и приложениях разница практически не заметна (офисные программы, плееры и т.п).

Основная память компьютера – это устройство с очень низкой скоростью обмена данных. И если процессору необходимы какие-то данные для работы, то он посылает запрос через шину памяти, и производится поиск этих нужных данных.

Только потом они отправляются непосредственно в процессор. Все это занимает очень много времени по компьютерным меркам. А вот, что если бы данные хранились где-то рядом с процессором?

Как раз кэш-память работает на основе этой идеи. И для того чтобы понять концепцию, для наглядности возьмем пример работы обычной библиотеки.

Назначение кеш памяти

Что же такое кэш-память или кэш (по англ. cache memory, cache):

В широком смысле, подразумевается любая память с быстрым доступом , где хранится часть данных с другого носителя с более медленным доступом;

В узком смысле - это сверхоперативный вид памяти, который используется для повышения скорости доступа микропроцессора к оперативной памяти.

Предположим, что в библиотеке работает один библиотекарь. Если человек приходит и просит первый том Пушкина, то библиотекарь идет к далекой книжной полке, находит книгу и приносит ее посетителю.

Когда этот человек прочитал книгу, то она обратно возвращается на полку. И если уже любой другой человек приходит и просит эту же самую книгу, цикл повторяется снова.

Вот пример того, как библиотека, то есть система работает без кэш-памяти .

Зачем нужна кэш-память?

А теперь представьте, что тот же самый библиотекарь использует ящик стола как кэш-память. Процедура выдачи книги остается той же, когда книгу спрашивают первый раз.

Но, когда книга вернулась, библиотекарь не возвращает ее на полку, а кладет в ящик стола (этакая местная оперативная кэш-память ).

Теперь, когда следующий человек приходит и просит эту книгу, библиотекарю уже нужно просто открыть данный ящик. Аналогичным образом кэш-память хранит элементы данных, к которым часто обращается процессор.

Таким образом, каждый раз, запрашиваются эти данные, и процессор получает их из кэша, минуя долгий путь в основную медленную память.

Хранит ли кэш только часто используемые данные? Как функционирует и работает кэш оперативной памяти ?

Кэш – это такая очень умная часть памяти, которая автоматически осуществляет поиск любых данных, которые могут понадобиться в ближайшем будущем. Опять же, вернемся за примером к нашей библиотеке.

Когда человек просит первый томик Пушкина, то библиотекарь приносит также второй том:-) И когда человек прочитает первую книгу, аероятнее всего, что он может попросить второй томик. А когда он это сделает, ходит далеко не надо... тот уже будет лежать в ящике.

Аналогичным образом, когда кэш-память извлекает запрошенные данные из памяти, она также извлекает данные, которые находятся по адресам, близким к запрошенным.

Эти смежные блоки данных, которые и передаются в кэш, называются кэш-линиями. Подробнее о понятии кэш-памяти можно посмотреть в этом видео:

Уровни кэш памяти

Большинство жестких дисков используют один уровень кэш-памяти . Но кэш имеет два уровня, где уровень L1 меньше и быстрее, а уровень L2, несколько медленнее (но все равно быстрее, чем основная внутренняя память ).

Лучшая бесплатная программа HDDScan для проверки жестких дисков

И снова возвратимся за примером к нашей библиотеке, на примере ее работы становится понятна как работает внешняя память компьютера .

Рассмотрим ящик библиотекаря в качестве кэша L1. Когда спрос на книги высок, и в ящике уже довольно много книг (нет места складывать) и вероятность того, что там найдется нужная, снижается.

Память L2 кэш

Здесь и появляется неодходимость L2. Представим L2 как книжный шкаф возле стола библиотекаря. Когда маленький ящик стола заполнен, библиотекарь начинает ставить книги в этот шкаф. И теперь, если книга не найдена в ящике сразу, надо взять ее из шкафа, не отходя далеко.

Аналогичным образом, когда кэш L1 заполнен, данные сохраняются в L2. Процессор в первую очередь ищет данные в L1, если они не будут найдены, то он обратится уже к L2. Если там тоже данные не найдены в L2, то идет обращение к основной памяти.

Двухуровневый кэш процессора

Кэш двух уровней у процессора – хорошая идея? Безусловно, да.

Возвращаясь к нашей упомянутой библиотеке. Если человек просит дать ему книгу, которая не хранится ни в ящике, ни в книжном шкафу, то библиотекарь тратит много времени впустую, осуществляя поиск сначала в ящике, потом в шкафу и только потом получает книгу с полки.

Когда же данные не найдены ни в первом, ни во втором уровне кэша, только тогда посылается запрос в основную память. На это тратится много процессорного времени.

Но если кэш-память работает так быстро, почему бы не выполнять его достаточно большой, чтобы хранить все данные оперативной памяти в нем?

Причина в том, что высокая скорость обходится очень дорого. Поэтому необходимо рациональное использование ресурсов кэш-памяти.

Хотя в последнее время, размеры кэш-памяти все увеличиваются, а цены растут не сильно, поэтому компьютеры работают все быстрее и быстрее.

То есть, наш библиотекарь обзаводится ящиком стола все большего размера, а шкафчик, стоящий рядом становится более вместительным! Еще в тему - двухядерные процессоры - правильно конфигурируем Windows.

Кэширование жесткого диска

Дисковая кэш-память (disk cache ), или кэш-память жестского диска - принцип построения кэш-памяти на основе динамического оперативного запоминающего устройства (типа DRAM), которое хранит наиболее часто используемые данные и команды, доступ к которым производится из внешней памяти.

Поэтому принцип кэширования жесткого диска во многом схож на принцип кэширования, используемый для оперативной динамической памяти, хоть способы доступа к диску и памяти значительно разнятся.

Так, время доступа к любой из ячеек оперативной памяти имеет примерно одинаковое для данного компьютера значение, а вот время доступа к различным блокам информации на жестком диске в общем случае будет различным.

1. Нужно затратить определенное время, чтобы магнитная головка записи-чтения подошла к искомой дорожке.

2. Поскольку при движении головка вибрирует, то необходимо немного времени, чтобы она успокоилась.

3. Наконец, требуется время, чтобы головка нашла искомый сектор.

Методы кэширования, используемые для оперативной памяти, применяются и для кэширования информации, хранимой на жестких дисках.

Кэш-память диска заполняется не только требуемым сектором, но и секторами, непосредственно следующими за ним, так как известно, что в большинстве случаев взаимосвязанные данные хранятся в соседних секторах.

Этот метод известен также как метод опережающего чтения (Read Ahead). При работе с многозадачными системами желательно иметь жесткий дик (винчестер) с мультисегментной кэш-памятью, которая для каждой из задач отводит свою часть кэша.

Кстати, если у вас недостаточно знаний о том, как лучше просканировать и протестировать жесткий диск , то обязательно посмотрите
подробный и бесплатный виде-оурок на эту тему:
как проверить винчестер на работоспособность

Кэш-память процессора

Кэш-памятью сейсас комплектуется большинство современных центральных процессоров. А первоначально кэш-память располагалась не на самом процессоре, а на материнской плате.

Кэш-память процессора на компьютере выполняет функции буфера между процессором и оперативной памятью.

Если кэш-память располагается между самим процессором и оперативной памятью, то при непосредственном обращении процессора к памяти сначала производится поиск необходимых данных в кэш-памяти .

Кэш-памяти процессора делятся на несколько видов:

Cache L1 - это «кэш-память первого уровня». Является промежуточной сверхоперативной памятью, находится на самом кристалле процессора, в ней размещаются наиболее часто используемые данные.

Работает эта память на частоте процессора. Время доступа к ней существенно меньше, чем к данным в основной оперативной памяти. Этим достигается ускорение работы процессора.

Cache L2 - «кэш-память второго уровня». Это промежуточная сверхоперативная память, которая имеет быстродействие ниже памяти первого уровня, но выше основной оперативной памяти. Ее размер обычно составляет от нескольких сотен килобайт до нескольких мегабайт.

Cache L3 - «кэш-память третьего уровня». Тоже промежуточная сверхоперативная память, имеющая быстродействие ниже памяти второго уровня, но выше основной оперативной памяти. Ее размер обычно составляет от одного до нескольких мегабайт.


Секреты и тонкости работы на компьютере

Сегодняшняя статья не является самостоятельным материалом - она просто продолжает исследование производительности трех поколений архитектуры Core в равных условиях (начатое в конце прошлого года и продолженное недавно). Правда, сегодня мы сделаем небольшой шаг в сторону - часто́ты ядер и кэш-памяти останутся теми же, что и ранее, а вот емкость последней уменьшится. Зачем это нужно? Мы использовали «полный» Core i7 двух последних поколений для чистоты эксперимента, тестируя его с включенной и отключенной поддержкой технологии Hyper-Threading, поскольку вот уже полтора года как Core i5 снабжаются не 8, а 6 МиБ L3. Понятно, что влияние емкости кэш-памяти на производительность не так уж велико, как иногда принято считать, но оно есть, и никуда от него не деться. К тому же, Core i5 являются более массовыми продуктами, чем Core i7, а в первом поколении по этому параметру их никто «не обижал». Зато раньше их чуть ограничивали по-другому: тактовая частота UnCore в i5 первого поколения составляла всего 2,13 ГГц, так что наш «Nehalem» - это не совсем представитель 700-й линейки на частоте 2,4 ГГц, а немного более быстрый процессор. Однако сильно расширять список участников и переделывать условия тестирования мы сочли излишним - все равно, как мы уже не раз предупреждали, тестирования этой линейки никакой новой практической информации не несут: реальные процессоры работают совсем в других режимах. А вот желающим досконально разобраться во всех тонких моментах, как нам кажется, такое тестирование будет интересно.

Конфигурация тестовых стендов

Мы решили ограничиться всего четырьмя процессорами, причем главных участников будет два: оба четырехъядерных Ivy Bridge, но с разной емкостью кэш-памяти третьего уровня. Третий - «Nehalem HT»: в прошлый раз по итоговому баллу он оказался почти идентичен «Ivy Bridge просто». И «просто Nehalem» который, как мы уже сказали, чуть-чуть быстрее настоящего Core i5 первого поколения, работающего на частоте 2,4 ГГц (из-за того, напомним, что в 700-й линейке частота UnCore была немного ниже), но не слишком радикально. Зато и сравнение интересно: с одной стороны - два шага улучшения микроархитекутры, с другой - кэш-память ограничили. Априори можно предположить, что первое в большинстве случаев перевесит, но вот насколько и вообще - как сопоставимы «первые» и «третьи» i5 (с поправкой на частоту UnCore, конечно, хотя если будет много желающих увидеть абсолютно точное сравнение, мы и его потом сделаем) - уже хорошая тема для исследования.

Тестирование

Традиционно, мы разбиваем все тесты на некоторое количество групп и приводим на диаграммах средний результат по группе тестов/приложений (детально с методикой тестирования вы можете ознакомиться в отдельной статье). Результаты на диаграммах приведены в баллах, за 100 баллов принята производительность референсной тестовой системы сайт образца 2011 года. Основывается она на процессоре AMD Athlon II X4 620, ну а объем памяти (8 ГБ) и видеокарта () являются стандартными для всех тестирований «основной линейки» и могут меняться только в рамках специальных исследований. Тем, кто интересуется более подробной информацией, опять-таки традиционно предлагается скачать таблицу в формате Microsoft Excel , в которой все результаты приведены как в преобразованном в баллы, так и в «натуральном» виде.

Интерактивная работа в трёхмерных пакетах

Некоторое влияние емкости кэш-памяти есть, однако оно менее 1%. Соответственно, оба Ivy Bridge можно считать идентичными друг другу, ну а улучшения архитектуры позволяют новым Core i5 спокойно обгонять старые Core i7 точно также, как это делают новые Core i7.

Финальный рендеринг трёхмерных сцен

В данном случае, естественно, никакие усовершенствования не могут скомпенсировать увеличение количества обрабатываемых потоков, но сегодня для нас самым важным является не это, а полное отсутствие влияния емкости кэш-памяти на производительность. Вот Celeron и Pentium, как мы уже установили , разные процессоры, так что программы рендеринга чувствительны к емкости L3, однако лишь тогда, когда последнего мало. А 6 МиБ на четыре ядра, как видим, вполне достаточно.

Упаковка и распаковка

Естественно, эти задачи восприимчивы к емкости кэш-памяти, однако и здесь эффект от ее увеличения с 6 до 8 МиБ достаточно скромный: примерно 3,6%. Более интересно, на самом деле, сравнение с первым поколением - архитектурные улучшения позволяют новым i5 на равных частотах «громить» даже старые i7, но это в общем зачете: благодаря тому, что два теста из четырех однопоточные, а еще один двухпоточный. Сжатие данных силами 7-Zip, естественно, быстрее всего на «Nehalem HT»: восемь потоков всегда быстрее четырех сравнимой производительности. А вот если ограничиться всего четырьмя, то наш «Ivy Bridge 6М» проигрывает не только своему прародителю, но и старичку Nehalem: улучшения микроархитектуры полностью пасуют перед уменьшением емкости кэш-памяти.

Кодирование аудио

Несколько неожиданным оказался не размер разницы между двумя Ivy Bridge, а то, что она вообще есть. Правда настолько копеечная, что ее можно и на особенности округления или погрешности измерения списать.

Компиляция

Важны потоки, но важна и емкость кэш-памяти. Однако, как обычно, не слишком - порядка 1,5%. Более любопытно сравнение с первым поколением Core при отключенном Hyper-Threading: «по очкам» новенький Core i5 даже на равной частоте побеждает, но один из трех компиляторов (производства Microsoft, если быть точным) отработал на обоих процессорах за одинаковое время. Даже с преимуществом в 5 секунд у более старого - притом, что в этой программе у «полнокэшевого» Ivy Bridge результаты на 4 секунды лучше, чем у Nehalem. В общем, и здесь нельзя считать, что уменьшение емкости L3 как-то сильно повлияло на Core i5 второго и третьего поколения, но есть и нюансы.

Математические и инженерные расчёты

Опять менее 1% разницы со «старшим» кристаллом и опять убедительная победа над первым поколением во всех его видах. Что скорее правило, чем исключение для подобных малопоточных тестов, но почему бы в нем в очередной раз не убедиться? Особенно в таком вот рафинированном виде, когда (в отличие от тестов в штатном режиме) не мешает разница в частотах («стандартных» или появляющаяся из-за работы Turbo Boost).

Растровая графика

Но и при более полной утилизации многопоточности картина не всегда меняется. А емкость кэш-памяти не дает вовсе ничего.

Векторная графика

И здесь аналогично. Правда и потоков вычисления нужна всего парочка.

Кодирование видео

В отличие от этой группы, где, тем не менее, даже Hyper-Threading не позволяет Nehalem бороться на равных с последователями более новых поколений. А вот им не слишком мешает уменьшение емкости кэш-памяти. Точнее, практически вообще не мешает, поскольку разница опять менее 1%.

Офисное ПО

Как и следовало ожидать, никакого прироста производительности от увеличения емкости кэш-памяти (точнее, ее падения от уменьшения) нет. Хотя если посмотреть на подробные результаты, то видно, что единственный многопоточный тест этой группы (а именно распознавание текста в FineReader) выполняется примерно на 1,5% быстрее при 8 МиБ L3, нежели на 6 МиБ. Казалось бы - что такое 1,5%? С точки зрения практики - ничто. А вот с исследовательской точки зрения уже интересно: как видим, именно многопоточным тестам чаще всего не хватает кэш-памяти. В результате разница (пусть и небольшая) иногда находится даже там, где ее быть, вроде бы, не должно. Хотя ничего такого уж необъяснимого в этом нет - грубо говоря, в малопоточных тестах мы имеем 3-6 МиБ на поток, а вот в многопоточных там же получается 1,5 МиБ. Первого - много, а вот второго может оказаться и не совсем достаточно.

Java

Впрочем, Java-машина с такой оценкой не согласна, но и это объяснимо: как мы уже не раз писали, она очень хорошо оптимизирована вовсе не под х86-процессоры, а под телефоны и кофеварки, где ядер может быть много, но вот кэш-памяти очень мало. А иногда и ядер, и кэш-памяти мало - дорогие ресурсы как по площади кристалла, так и по энергопотреблению. И, если с ядрами и мегагерцами что-то сделать получается, то вот с кэшом все сложнее: в четырехъядерной Tegra 3 его, к примеру, всего 1 МиБ. Понятно, что JVM может «схрюпать» и больше (как и все системы с байт-кодом), что мы уже видели сравнивая Celeron и Pentium, но более 1,5 МиБ на поток ей если и может пригодиться, то не в тех задачах, которые вошли в SPECjvm 2008.

Игры

На игры у нас были большие надежды, поскольку к емкости кэш-памяти они нередко оказываются более требовательными чем даже архиваторы. Но бывает такое тогда, когда ее совсем мало, а 6 МиБ - как видим, достаточно. Да и, опять же, процессоры уровня четырехъядерных Core любых поколений даже на частоте 2,4 ГГц слишком мощное решение для используемых игровых приложений, так что узким местом явно будут не они, а прочие компоненты системы. Поэтому мы решили стряхнуть пыль с режимов с низким качеством графики - понятно, что для таких систем он слишком уж синтетичен, но у нас и все тестирование синтетическое:)

Когда не мешают всякие там видеокарты и прочее, разница между двумя Ivy Bridge достигает уже «безумных» 3%: и в этом случае можно не обращать внимания на практике, но для теории - немало. Больше вышло как раз только в архиваторах.

Многозадачное окружение

Где-то мы уже такое видели. Ну да - когда тестировали шестиядерные процессоры под LGA2011. И вот ситуация повторяется: нагрузка что ни на есть многопоточная, часть используемых программ до кэш-памяти «жадная», а вот ее увеличение только снижает среднюю производительность. Чем это можно объяснить? Разве что тем, что усложняется арбитраж и увеличивается количество промахов. Причем, заметим, происходит такое только тогда, когда емкость L3 относительно велика и одновременно работающих потоков вычисления не менее четырех - в бюджетном сегменте совсем другая картина. Во всяком случае, как показало наше недавнее тестирование Pentium и Celeron, для двухъядерных процессоров увеличение L3 с 2 до 3 МиБ добавляет 6% производительности. А вот четырех- и шестиядерным не дает, мягко говоря ничего. Даже менее, чем ничего.

Итого

Закономерный общий итог: поскольку нигде существенной разницы между процессорами с разным объемом L3 не обнаружилось, нет ее и в «общем и целом». Таким образом, расстраиваться по поводу уменьшения емкости кэш-памяти во втором и третьем поколении Core i5 поводов нет - предшественники первого поколения им все равно не конкуренты. Да и старые Core i7 в среднем тоже демонстрируют лишь аналогичный уровень производительности (разумеется, в основном за счет отставания в малопоточных приложениях - а так есть сценарии, с которыми в равных условиях они справляются быстрее). Но, как мы уже говорили, на практике реальные процессоры находятся далеко не в равных условиях по частотам, так что практическая разница между поколениями больше, чем можно получить в таких вот исследованиях.

Открытым остается лишь один вопрос: нам пришлось сильно снизить тактовую частоту для обеспечения равенства условий с первым поколением Core, но сохранятся ли замеченные закономерности в более близких к реальности условиям? Ведь из того, что четыре низкоскоростных потока вычислений не видят разницы между 6 и 8 МиБ кэш-памяти, не следует, что она не обнаружится в случае четырех высокоскоростных. Правда, не следует и обратного, так что для того, чтобы окончательно закрыть тему теоретических исследований, нам понадобится еще одна лабораторная работа, которой мы и займемся в следующий раз.

Всем пользователям хорошо известны такие элементы компьютера, как процессор, отвечающий за обработку данных, а также оперативная память (ОЗУ или RAM), отвечающая за их хранение. Но далеко не все, наверное, знают, что существует и кэш-память процессора(Cache CPU), то есть оперативная память самого процессора (так называемая сверхоперативная память).

В чем же состоит причина, которая побудила разработчиков компьютеров использовать специальную память для процессора? Разве возможностей ОЗУ для компьютера недостаточно?

Действительно, долгое время персональные компьютеры обходились без какой-либо кэш-памяти. Но, как известно, процессор – это самое быстродействующее устройство персонального компьютера и его скорость росла с каждым новым поколением CPU. В настоящее время его скорость измеряется миллиардами операций в секунду. В то же время стандартная оперативная память не столь значительно увеличила свое быстродействие за время своей эволюции.

Вообще говоря, существуют две основные технологии микросхем памяти – статическая память и динамическая память. Не углубляясь в подробности их устройства, скажем лишь, что статическая память, в отличие от динамической, не требует регенерации; кроме того, в статической памяти для одного бита информации используется 4-8 транзисторов, в то время как в динамической – 1-2 транзистора. Соответственно динамическая память гораздо дешевле статической, но в то же время и намного медленнее. В настоящее время микросхемы ОЗУ изготавливаются на основе динамической памяти.

Примерная эволюция соотношения скорости работы процессоров и ОЗУ:

Таким образом, если бы процессор брал все время информацию из оперативной памяти, то ему пришлось бы ждать медлительную динамическую память, и он все время бы простаивал. В том же случае, если бы в качестве ОЗУ использовалась статическая память, то стоимость компьютера возросла бы в несколько раз.

Именно поэтому был разработан разумный компромисс. Основная часть ОЗУ так и осталась динамической, в то время как у процессора появилась своя быстрая кэш-память, основанная на микросхемах статической памяти. Ее объем сравнительно невелик – например, объем кэш-памяти второго уровня составляет всего несколько мегабайт. Впрочем, тут стоить вспомнить о том, что вся оперативная память первых компьютеров IBM PC составляла меньше 1 МБ.

Кроме того, на целесообразность внедрения технологии кэширования влияет еще и тот фактор, что разные приложения, находящиеся в оперативной памяти, по-разному нагружают процессор, и, как следствие, существует немало данных, требующих приоритетной обработки по сравнению с остальными.

История кэш-памяти

Строго говоря, до того, как кэш-память перебралась на персоналки, она уже несколько десятилетий успешно использовалась в суперкомпьютерах.

Впервые кэш-память объемом всего в 16 КБ появилась в ПК на базе процессора i80386. На сегодняшний день современные процессоры используют различные уровни кэша, от первого (самый быстрый кэш самого маленького объема – как правило, 128 КБ) до третьего (самый медленный кэш самого большого объема – до десятков МБ).

Сначала внешняя кэш-память процессора размещалась на отдельном чипе. Со временем, однако, это привело к тому, что шина, расположенная между кэшем и процессором, стала узким местом, замедляющим обмен данными. В современных микропроцессорах и первый, и второй уровни кэш-памяти находятся в самом ядре процессора.

Долгое время в процессорах существовали всего два уровня кэша, но в CPU Intel Itanium впервые появилась кэш-память третьего уровня, общая для всех ядер процессора. Существуют и разработки процессоров с четырехуровневым кэшем.

Архитектуры и принципы работы кэша

На сегодняшний день известны два основных типа организации кэш-памяти, которые берут свое начало от первых теоретических разработок в области кибернетики – принстонская и гарвардская архитектуры. Принстонская архитектура подразумевает единое пространство памяти для хранения данных и команд, а гарвардская – раздельное. Большинство процессоров персональных компьютеров линейки x86 использует раздельный тип кэш-памяти. Кроме того, в современных процессорах появился также третий тип кэш-памяти – так называемый буфер ассоциативной трансляции, предназначенный для ускорения преобразования адресов виртуальной памяти операционной системы в адреса физической памяти.

Упрощенно схему взаимодействия кэш-памяти и процессора можно описать следующим образом. Сначала происходит проверка наличия нужной процессору информации в самом быстром - кэше первого уровня, затем - в кэше второго уровня, и.т.д. Если же нужной информации в каком-либо уровне кэша не оказалось, то говорят об ошибке, или промахе кэша. Если информации в кэше нет вообще, то процессору приходится брать ее из ОЗУ или даже из внешней памяти (с жесткого диска).

Порядок поиска процессором информации в памяти:

Именно таким образом Процессор осуществляет поиск инфоромации

Для управления работой кэш-памяти и ее взаимодействия с вычислительными блоками процессора, а также ОЗУ существует специальный контроллер.

Схема организации взаимодействия ядра процессора, кэша и ОЗУ:

Кэш-контроллер является ключевым элементом связи процессора, ОЗУ и Кэш-памяти

Следует отметить, что кэширование данных – это сложный процесс, в ходе которого используется множество технологий и математических алгоритмов. Среди базовых понятий, применяющихся при кэшировании, можно выделить методы записи кэша и архитектуру ассоциативности кэш-памяти.

Методы записи кэша

Существует два основных метода записи информации в кэш-память:

  1. Метод write-back (обратная запись) – запись данных производится сначала в кэш, а затем, при наступлении определенных условий, и в ОЗУ.
  2. Метод write-through (сквозная запись) – запись данных производится одновременно в ОЗУ и в кэш.

Архитектура ассоциативности кэш-памяти

Архитектура ассоциативности кэша определяет способ, при помощи которого данные из ОЗУ отображаются в кэше. Существуют следующие основные варианты архитектуры ассоциативности кэширования:

  1. Кэш с прямым отображением – определенный участок кэша отвечает за определенный участок ОЗУ
  2. Полностью ассоциативный кэш – любой участок кэша может ассоциироваться с любым участком ОЗУ
  3. Смешанный кэш (наборно-ассоциативный)

На различных уровнях кэша обычно могут использоваться различные архитектуры ассоциативности кэша. Кэширование с прямым отображением ОЗУ является самым быстрым вариантом кэширования, поэтому эта архитектура обычно используется для кэшей большого объема. В свою очередь, полностью ассоциативный кэш обладает меньшим количеством ошибок кэширования (промахов).

Заключение

В этой статье вы познакомились с понятием кэш-памяти, архитектурой кэш-памяти и методами кэширования, узнали о том, как она влияет на производительность современного компьютера. Наличие кэш-памяти позволяет значительно оптимизировать работу процессора, уменьшить время его простоя, а, следовательно, и увеличить быстродействие всей системы.

Кэш — память (кеш , cash , буфер — eng.) — применяется в цифровых устройствах, как высокоскоростной буфер обмена. Кэш память можно встретить на таких устройствах компьютера как , процессоры, сетевые карты, приводы компакт дисков и многих других.

Принцип работы и архитектура кэша могут сильно отличаться.

К примеру, кэш может служить как обычный буфер обмена . Устройство обрабатывает данные и передаёт их в высокоскоростной буфер, где контроллёр передаёт данные на интерфейс. Предназначен такой кэш для предотвращения ошибок, аппаратной проверки данных на целостность, либо для кодировки сигнала от устройства в понятный сигнал для интерфейса, без задержек. Такая система применяется например в CD/DVD приводах компакт дисков.

В другом случае, кэш может служить для хранения часто используемого кода и тем самым ускорения обработки данных. То есть, устройству не нужно снова вычислять или искать данные, что заняло бы гораздо больше времени, чем чтение их из кэш-а. В данном случае очень большую роль играет размер и скорость кэш-а.

Такая архитектура чаще всего встречается на жёстких дисках, и центральных процессорах (CPU ).

При работе устройств, в кэш могут загружаться специальные прошивки или программы диспетчеры, которые работали бы медленней с ПЗУ (постоянное запоминающее устройство).

Большинство современных устройство, используют смешанный тип кэша , который может служить как буфером обмена, как и для хранения часто используемого кода.

Существует несколько очень важных функций, реализуемых для кэша процессоров и видео чипов.

Объединение исполнительных блоков . В центральных процессорах и видео процессорах часто используется быстрый общий кэш между ядрами. Соответственно, если одно ядро обработало информацию и она находится в кэше, а поступает команда на такую же операцию, либо на работу с этими данными, то данные не будут снова обрабатываться процессором, а будут взяты из кэша для дальнейшей обработки. Ядро будет разгружено для обработки других данных. Это значительно увеличивает производительность в однотипных, но сложных вычислениях, особенно если кэш имеет большой объём и скорость.

Общий кэш , также позволяет ядрам работать с ним напрямую, минуя медленную .

Кэш для инструкций. Существует либо общий очень быстрый кэш первого уровня для инструкций и других операций, либо специально выделенный под них. Чем больше в процессоре заложенных инструкций, тем больший кэш для инструкций ему требуется. Это уменьшает задержки памяти и позволяет блоку инструкций функционировать практически независимо.При его заполнении, блок инструкций начинает периодически простаивать, что замедляет скорость вычисления.

Другие функции и особенности .

Примечательно, что в CPU (центральных процессорах), применяется аппаратная коррекция ошибок (ECC ), потому как небольшая ошибочка в кэше, может привести к одной сплошной ошибке при дальнейшей обработке этих данных.

В CPU и GPU существует иерархия кэш памяти , которая позволяет разделять данные для отдельных ядер и общие. Хотя почти все данные из кэша второго уровня, всё равно копируются в третий, общий уровень, но не всегда. Первый уровень кеша — самый быстрый, а каждый последующий всё медленней, но больше по размеру.

Для процессоров, нормальным считается три и менее уровней кэша. Это позволяет добиться сбалансированности между скоростью, размером кэша и тепловыделением. В видеопроцессорах сложно встретить более двух уровней кэша.

Размер кэша, влияние на производительность и другие характеристики .

Естественно, чем больше кэш , тем больше данных он может хранить и обрабатывать, но тут есть серьёзная проблема.

Большой кеш — это большой бюджет . В серверных процессорах (CPU ), кэш может использовать до 80% транзисторного бюджета. Во первых, это сказывается на конечной стоимости, а во вторых увеличивается энергопотребление и тепловыделение, которое не сопоставимо с увеличенной на несколько процентов производительностью.